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This paper examines the large-scale dynamics of a layer of stratified fluid on the /I- 
plane. A three-dimensional asymptotic system is derived which governs geostrophic 
flows with large displacement of isopycnal surfaces. This is then reduced to a two- 
dimensional set of equations which describe the interaction of a baroclinic ‘quasi- 
mode ’ with arbitrary vertical profile and barotrophic motion. The baroclinic instability 
of large-amplitude zonal flows with vertical shear is studied within the framework of 
these equations. In the case where the displacement of isopycnal surfaces is small, the 
results obtained should overlap with the ‘traditional ’ baroclinic instability of quasi- 
geostrophic (small-amplitude) flows. In order to compare the two types of instability, 
the quasi-geostrophic boundary-value problem is solved asymptotically for the case of 
long-wave disturbances and weak /3-effect (the latter limit of quasi-geostrophic theory 
has not been considered previously). The instability that is found is linked to the 
Hamiltonian structure of the governing equations. The equations derived are 
generalized for the case of more than one baroclinic quasi-mode. 

1. Introduction 

non-dimensional parameters : 
The dynamics of large-scale density-driven flows in the ocean are governed by three 

(i) The Rossby number e which characterizes balance of nonlinear effects and 
rotation : 

€ =  U/LJ 
where U is the effective velocity scale, L is the horizontal spatial scale of the motion and 
f is the Coriolis parameter. All large-scale currents in the ocean (except, possibly, the 
Gulf Stream) are geostrophic: E 6 1. 

(ii) The 8-effect characterized by 

/3 = (cot A )  L,/R, 
where L, = (gHGp/p,);f-’ is the internal deformation radius, g is the acceleration due 
to gravity, H is the total depth of the ocean, 6p/p, is the relative horizontal density 
variation, R is the Earth’s radius and h is the latitude. Since L, is always much smaller 
than R, it follows that /3 is small. 

(iii) The parameter 6h/h, namely the relative displacement of isopycnal surfaces (Sh  
refers to variations over the scale L). The Rossby waves are characterized by 6h/h 6 1. 
whereas the isopycnal surfaces of oceanic fronts usually outcrop onto the surface of the 
ocean (81 = h, cf. figure 1). This paper examines currents with 6h/h  - 1 (large- 
amplitude flows). 

Traditionally, density-driven currents were examined using the two-layer model of 
stratification. There are three approaches to two-layer flows. 
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The first approach (e.g. Killworth, Paldor & Stone 1984; Paldor & Killworth 1987; 
Paldor & Ghil 1990) is based on the direct analysis of the exact equations of two-layer 
fluid dynamics. Unfortunately, these equations are very complex and in most cases 
cannot be solved analytically. 

The second approach employs the assumption that the depth of the upper layer is 
much smaller than the total depth of the fluid (e.g. Griffiths, Killworth & Stone 1982; 
Killworth 1983 ; Cushman-Roisin 1986). Direct comparison of the one-layer and two- 
layer results (Killworth 1983) shows that the one-layer model is adequate only if this 
parameter is less than 0.01. Unfortunately, in the real ocean this parameter is not very 
small: h / H  - f-t. 

The third approach to the dynamics of two-layer density-driven flows is based on the 
assumption 

E . 4  1 

(Benilov 1992). It was demonstrated that large-amplitude geostrophic dynamics 
depend strongly on the ratio of small parameters E and /3: two systems of equations 
were derived for the cases of weak and strong ,&effect (p - E! and B - E ,  respectively). 

The present paper examines the case 

/3 - f3 -g 1, 6h/h - 1 

within the framework of a continuous model of stratification. An asymptotic system of 
three-dimensional equations is derived ($ 2) and reduced to a two-dimensional set, 
which describes interaction of a baroclinic ‘ quasi-mode ’ (with arbitrary vertical 
profile) and barotropic motion ($3). Although this reduction imposes a severe 
constraint on allowable initial conditions, the two-dimensional set can describe the 
baroclinic instability of zonal flows with an arbitrary vertical shear ($4). In order to 
compare this instability to the ‘traditional’ baroclinic instability of small-amplitude 
quasi-geostrophic flows, the latter is examined asymptotically using the (long- 
wave + weak @-effect) approximation ($5) .  The instability of large-amplitude flows is 
linked to the Hamiltonian structure of the governing equations in $6. A system which 
describes the barotropic motion and more than one baroclinic quasi-modes is derived 
in $7. 

2. Basic equations 
The equations governing a layer of ideal stratified fluid on the P-plane are 

Here 

u,+uu,+uu,+wu,+P, = (l+Py)o, 
~,+uu,+uu,+wu,+P,  = -(1 +Py)u ,  

p, = -p ,  

Pt + up, + up, + wp, = 0, 
u,+u,+w, = 0. 

where the dimensional variables (the spatial coordinates (x ,y,  2 ) ;  the time t ;  the fluid 
velocity (u, u, w) ;  the pressure P and the density p) are marked with tildas. 
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The no-flow condition at the rigid boundaries are 

w = O  at z=-l ,O.  (3) 

Instead of the continuity equation (1 e), we shall derive the vorticity equation according 
to the following 'recipe': 

Following routine calculations we obtain 
( w, - ( 14 ,  - ( 1 - BY) (1 4. 

(0, - uJt + 4% - u,), + u(u, - u,), + (u, + ",I (0, - u,) 

+ [w(u, - u,), + (w,  0, - w, 4 1  = (1 + BY) w, -Po. (4) 
Since (le) was included in derivation of (4), system (la-d), (4) is equivalent to the 
original set (1 a-e). 

We are concerned with large-ampli tude flows where 
(i) the horizontal and vertical variations of density are of the same order; 
(ii) the displacement of isopycnal surfaces is of the order of the total depth of the 

layer. 
Accordingly, p, P and z should be scaled by unity: 

p = p f ,  P = P; z = 2'. ( 5  a-c) 

Within the framework of the geostrophic approximation the scaling factors should 
satisfy the following conditions 

scale of P 
scale of x and y 

= scale of u and u, 

- 1 
scale o f t  

- - - €9 

scale of u and u 
scale of x and y 

scale of u and u - scale of w . 
scale of x and y scale of z ' 

where B is the Rossby number. From a physical viewpoint, these conditions mean that 
the horizontal spatial scale is much bigger than L, and the vertical density advection 
is much weaker than the horizontal advection. Accordingly, we have 

- 8 

x = &f, y = &; t = p t ' ;  

u = &uf, v = €bf, w = € 2 w f .  

B = Eip, 
We also assume that 

which means that the &effect terms in (1 a, b) are of the order of the nonlinear 
ageostrophic terms. 

Substitution of ( 5 )  into (1 ad), (4) yields (primes omitted): 

E(Ut + uu, + uu,) + E2WI.4, + P, = (1 +€BY) u, 

E(Ut + uu, + uu,) + €2wu, + P, = - (1 + €By) u, 

pt + up, + UP, + q% = 0, 

(0, - u&t + 4% - u,)z + 40, - u,), + (u, + 0,) (0, - uy) 

(6 a) 

(6 6) 
p, = -p,  (6 4 

(6 d )  

+~[w(u,-u,)~+(w,u,-w,u,)]  = (1 +€By) w,-@v. (6e) 
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Omitting small terms from (6a-c), we express u, v and p via P :  

(7) u =  P,, u=-Py ,  p=-P,. 

Substituting (7) into ( 6 4  e )  and dropping small terms, we obtain 

W ,  = V2<+J(P,V2P)+PP,; 

P , t  + J(P, P,> = 0, 

where J(P, Q) = P, Qy - Py Q, is the Jacobian operator. Integrating (8) with respect to 
z and taking into account boundary conditions (3), we obtain 

[Vz<+J(P,V2P)+PPz]d~ = 0. 

Equations (9 a) and (9 b)  form a closed system governing P(x, y ,  z ,  t ) .  

3. Two-dimensional reductions of system (9) 
It is to be expected that for the two-layer stratification, the three-dimensional 

integro-differential system (9) can be reduced to the system derived directly from the 
two-layer shallow-water equations by Benilov (1992). It appears, however, that in some 
cases of continuous stratification, (9) can also be reduced to a two-dimensional 
differential system. 

System (9) is compatible with the following ansatz : 
3.1. Density-driven currents 

P(X, Y ,  z, 0 = 44 + w(x, Y ,  2 )  + @k Y ,  2 )  qw, (10) 

where P describes the background field of stratification, Y and @ are, respectively, the 
amplitudes of barotropic and baroclinic components of the motion. Since vertical 
profiles of the two components are steady in time, they will be referred to as ‘quasi- 
modes’. Without loss of generality $(z) can be assumed to satisfy the following 
conditions : 

4 d z  = 0, j:lq5zdz = 1 L (1 1 a, 4 

(the pattern of isopycnal surfaces, corresponding to ansatz (10) with 

@ + O ,  Y+O as x + - 0 0 ;  

@ + const, =I= 0, Y+ const, .t; 0 as x + + 00 

is shown on figure 1 a). Substituting (10) into (9) and taking into account (1 l), we 
obtain the following system of equations which govern Y and @: 

Qt+J(Y,@) = 0, V z Y I , + J ( Y , V * ~ + J ( @ , V 2 @ ) + ~ Y ,  = 0. (12) 

It is noted that the resulting equations do not depend on the background stratification 
field p<z), which indicates that large-amplitude flows are sensitive only to horizontal 
gradients of density. 

3.2. Fronts 
It is remarked that the above pattern of isopycnal surfaces (figure 1 a) does not describe 
the important feature of oceanic fronts wherein isopycnal surfaces converge to the 
surface in a ‘bunch’ (figure lb). The ocean in this case can be subdivided into two 
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,?=-‘////1), 

z =  

z = - 1  
/ / / / / / / / / / / / / I  

FIGURE 1. Distribution of isopycnal surfaces in (a) a density-driven current (ansatz (10)); 
(b)  an oceanic front (ansatz (13)). 

continuously stratified layers: the bottom layer with steady stratification P(z) and the 
upper layer with a horizontally inhomogeneous stratification field. The upper layer is 
‘squeezed’ or ‘stretched’ by its depth h(x, y ,  t ) ,  which vanishes at the outcrop of the 
front : h(x,, y ,  t )  = 0.  This pattern corresponds to the following ansatz : 

P ( X ,  Y ,  2 , t )  = &) + F(x, Y ,  0 + G(x, Y ,  4 w/w, Y ,  01, (13) 
$lZ<-1 = 0. ( 1 4 4  

where $(z) describes the stratification of the upper layer. Without loss of generality, I,+ 
can be assumed to satisfy 

l l $ d . z  = 1. (14b) 

The density variation p has its minimum value at the surface, where it can be assumed 
constant? : 

Substitution of (1 3) into the last equality yields 

Plz=o = -<I,=, = - 1. 

G = 4% Y ,  t)/$’(O), 
t This corresponds to an infinitesmimal layer with fast-varying density profile at x Q x, (cf. 

figure lb) .  
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3 

FIGURE 2. Two models of stratification for oceanic fronts. $ describes vertical structure of the 
pressure field, p is the corresponding non-dimensional density variation : (a) two-layer model ; (b)  
model with linear stratification of the upper layer. 

where the prime denotes differentiation with respect to z. Introducing the amplitude of 
the barotropic component : 

[ P ( x , y , ~ , t ) - F ( ~ ) ] d z =  F + G  

ansatz (1 3) can be rewritten in the form 

Substituting (1 5) into (9), we obtain 

(16) 

(17) 

I h,+J(Y,h)  = 0, 

V2Yt + J( Y,  V2Y')+a2V. J[h, h(y-h)  Vh] +PYz = 0 J 

y = a  @, (21,b2 + z21,bt2) dz 
2 a = -  

$'@) ' 
where 

are constants which depend on the stratification profile of the upper layer. For 
example, the two-layer model (figure 2 a) corresponds to 

$ = 2(z+ l)B(Z+ l ) ,  a = 1, y = 1; 
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where O(z) is the Heaviside step function, and system (14) coincides with the two-layer 
equations derived by Benilov (1992). One can also consider a model with linear 
stratification of the upper layer (figure 2b): 

II. = 3(2+ i ) 2 e ( Z +  i), = 1 6 
3, Y = 6. 

Further models of stratification will not be considered here. Instead, we shall 
demonstrate that system (16) is equivalent to the simpler system (12) regardless of the 
stratification model adopted. 

Evidently, the change of variables 

h +- @(h) = a [h'(y - h')]fdh' 1 
reduces (16) to (12). Note, however, that transformation (18) exists only if the 
integrand [h'(y-h')]r is real in the interval (0 < h' < l),f that is when 

y >  1. (19) 

where y is defined by (17) and (14). Proof of this important inequality is given in the 
Appendix. 

Thus, system (1 2) describes both large-amplitude density-driven currents and fronts. 
Vertical structure of the flow within its framework is 'parameterized' - this represents 
an important advantage over the exact system (1) or asymptotic equations (9). 

4. Baroclinic instability of zonal flows 
It is clear that both substitutions (10) or (15) impose severe constraints on the initial 

conditions allowed for system (12). Ansatz (lo), for example, shows that system (12) 
is valid only if the vertical and horizontal variables in the initial distribution of pressure 
can be separated : 

Nevertheless, system (12), in contrast with any two-layer system, does describe at least 
some instances of flows with non- trivial three-dimensional structure, the most 
important being the baroclinic instability of a zonally homogeneous current. At the 
same time, consideration of baroclinic instability within the framework of system (12) 
should not be difficult: since (12) does not explicitly depend on the vertical structure 
of the current, the corresponding boundary-value problem will contain only constant 
coefficients . 

4.1. Growth rate of the instability 
Consider the following steady solution to (1 2) : 

P(x, Y ,  2) = m + w, Y )  + @(x, Y)  $(4. (20) 

Yo = - u y ,  Go = - v y ;  (21) 

where U and V are constants. Solution (21) describes a zonally homogeneous current 
~ ( z )  with an arbitrary vertical profile: 

iS(2) = u+ V$(z). (22) 

Linearizing (12) against the background of solution (21) according to 

ul(x, Y ,  t )  = - UY + II.(x, Y ,  t) ,  N X ,  Y ,  t )  = - vY + $(& Y ,  0 ;  
t Since h represents the dimensional thickness of the upper layer scaled by the total depth of the 

fluid, it must be positive and smaller than unity. 
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4 
FIGURE 3. Growth rate r versus the wavenumber q = ( k z + P ) ;  of the disturbances. 5 is the angle 

between the flow and the wavenumber. 

we obtain 

The harmonic-wave solution to this system is 

q5t + Uq5= - V$= = 0, V2$,, + W2$= + W2q5z +p$= = 0. 

$ = const,exp(iwt-ikx-ily), $ = const,exp(iwt-ikx-ily); 

where 
-pk [p2 -4V2(k2 + 12)2]i 

2(k2 + 1 2, 
w = kU+k 

Evidently, if k2+12 > p / 2 V ,  

the frequency w is complex, which indicates instability with the growth rate 

Im [p2 - 4 V2(k2 + 1 '))"I' 
= 2(k2+12) 

(cf. figure 3) .  Thus, all zonal flows described by system (12) are unstable. 

on integral (mean) characteristics of the flow: 
It is worth noting that the dispersion relation of unstable disturbances depends only 

V 2  = ll [u(z) - U]* dz, U = ii(z)dz (23 b) 

(these equalities were obtained using (22) and (1 1)). The growth rate r does not even 
depend on the barotropic component U ,  but is determined by the baroclinic 
component and p-effect. The latter is a stabilizing factor - thus, the most unstable 
disturbances are short (the p-effect mainly affects long waves). 

It should be emphasized that (23a) is valid only if the dimensional wavelength of the 
perturbation is smaller than the deformation radius (this condition follows from 
scaling ( 5 ) ) .  In terms of the non-dimensional scaled variables this means that 

k2+p2 << c-'. 

Nevertheless, one can hope that even with the violation of this condition, (23) 
provides a qualitatively correct estimate of the growth rate of the instability. Since 
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(4 (b) 
timescale z +If 2 e-l/f 

displacement of isopycnal surfaces -'i 
velocity scale 5 .'.& 
B - < &f 56 

vertical spatial scale - H  - H  
horizontal spatial scale 2 e-4 Ld 2 Ld 

56H 
5 'fLd 

slope of isopycnal surfaces 5 d H/L, 5 & H/Ld 

TABLE 1. Comparison between the dimensional parameters of flows described by (a) the present 
theory and (b) the quasi-geostrophic equation governing small-amplitude currents. Here f is the 
Coriolis parameter, Ld is the deformation radius, His the total depth of the ocean and e is the Rossby 
number. 

disturbances with shorter wavelengths are of internal-wave (rather than planetary- 
wave) nature, they are likely to be stable; thus, the maximum growth takes place at 
wavelengths of the order of the deformation radius: 

- 
v2 = lH [C(z) - f i I2  dz, fi = lH C(z) dz; 1 

where the dimensional variables are marked with tildas. 
System (12) has another steady solution : 

Y EE 0, @ = - V(ycosC-xsin0; (25) 

which describes a non-zonal current in the upper layer and a countercurrent in the 
bottom layer, such that the total mass flux is equal to zero. Although solution (25) is 
not steady within the framework of the original equations (l), the timescale of its 
evolution is abnormally long (-J E-~/A and the asymptotic system (12) 'treats' it as 
steady. 

With regards to stability, (25) is similar to the case of zonal flows. The dispersion 
relation of linear perturbations, 

-Pf{$-4VZ(k2+1z)2[(kcos~+lsin o/kl2}+ 
2(k2 + 1 2, 

w = k  9 

demonstrates that all non-zonal currents are unstable. 

4.2. Discussion 
In order to clarify the question of correspondence of the above instability and the 
'traditional ' baroclinic instability of small-amplitude quasi-geostrophic currents, we 
compare in table 1 the dimensional parameters of flows described by: (a)  the present 
theory ; (b)  the quasi-geostrophic equation governing small-amplitude currents (cf. 
Kamenkovich & Reznik 1978; Pedlosky 1987; and references therein). The parameters 
in the table are derived from the scaling equalities (2), (5) and Pedlosky (1987, Chap. 
6) .  

Table 1 indicates that the small-amplitude limit of (a)  should coincide with the (long- 
wave + weak P-effect) limit of (b). The latter limit of the quasi-geostrophic equation 
seems not to have been previously considered in the literature. It will be examined in 
the next section. 
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5. Long-wave quasi-geostrophic instability with weak b-effect 

equation is (e.g. Pedlosky 1987) 
In terms of the non-dimensional scaled variables used above, the quasi-geostrophic 

[~AP+(~P,) , ] ,+J[P,BAP+(~P,) , ]+E/!?P,  = 0, (26 4 
where n(z) = f 2 / N 2  is the stratification field and N(z) is the Vasala frquency. Equation 
(26 a) should be supplemented by the boundary condition 

n[P,, + J(P, P,)] = 0 at z = - 1,O. (26 b) 

Linearizing (26) against the background of a steady shear flow : 

P(x, y, z, t )  = -yii(z) +p(z) exp (iwt - ikx - ily), 

we obtain (w-kii)[€(k2 +12)p-(np,),] +@kp-k(nU,),p = 0, 

n[(w-ki i )p ,+ki izp]  = 0 at z = - l , O .  

We solve this boundary-value problem using the perturbation expansion 

p = p 0 + q 1 +  ..., w = W,+€W,+ .... 
The solution to the zeroth-order boundary-value problem 

(wo - ku3 @Po*), + k(n%),p, = 0, 
n[(wo - kii)p,, + kii,p,] = 0 at z = - 1,O 

is p o  = W ,  - kii. 

The first-order boundary-value problem is 

(w, - kii) (np,,), + k(niiz),pl = (w, - kii)* (k2 + 12)  + /3k(wo - kii) - wl[n(w0 - kii),],, 
(27 a> 

n[(w,-kii)p,,+kii,p,] = nw,(w,-kii)), at z = - 1,O. (27 6) 

Integrating (27a) from z = - 1 to z = 0 and taking into account (27b), we obtain the 
following equation for w,: 

Evidently, the solution to this equation coincides with (23). It should be emphasized 
that, although the two expressions coincide exactly, the dispersion relation (23) does 
not imply an assumption of small displacement of isopycnal surfaces : scaling ( 5 )  
proves that the displacement of isopycnal surfaces was assumed large. 

6. Hamiltonian structure of system (12) 

be considered as a Hamiltonian system. 
In order to clarify the mathematical background of the instabilities found, (12) will 

System (12) conserves the following invariant of motion: 



Baroclinic instability of large-amplitude geostrophic fzows 51 1 

where F(@) is an arbitrary function. In terms of exact equations (6),  the above invariant 
corresponds to 

9 = 111 ll G@ -p)  dz dx dy, p(d = -p&) ; 

where G@) is also an arbitrary function (not necessarily equal to F). If G@) = p and 
F(@) = @, both invariants represent mass conservation law. 

It is worth noting that the energy invariant of system (6) 

8 = //:I ll [@-p) z +%(u' + u')] dzdxdy (28) 

'survives' the transition to the asymptotic system (12) only as the integral of potential 
energy. Indeed, substituting (10) into (28) and taking into account (1 1 a), we have 

which also shows that the potential energy of geostrophic motion is proportional to the 
mass invariant. Clearly, the kinetic energy 

X = ~/~~[(V!P)2+(V@) ' ]dxdy,  

(obtained by substituting equalities (7a) and (10) into the second term of the energy 
integral (28)) cannot be conserved separately. This can also be verified via 
straightforward calculation of dX/dt .  

System (12) also conserves an invariant of motion having no analogue in terms of 
the exact equations (6) and differing from the kinetic energy in sign: 

& = t 5555;: [(Vv2 - (V@)'] dx dy. 

Although H has no obvious physical meaning,? it plays the role of the Hamiltonian 
of system (12). In order to demonstrate this, we define the Poisson brackets: 

where SZ = V2!P+/Iy and 9,s  are arbitrary functionals depending on @ and 8. Now 
system (12) can be rewritten in the Hamiltonian form: 

@,+{&,@} = 0, Q,+(H,SZ} = 0. 
Note that Hamiltonian (29) is of sign-indefinite type.$ 

Generally speaking, the fact that the Hamiltonian of a dynamic system may change 
its sign is usually of profound importance for the stability properties of the system. For 
example, the ordinary differential equation 

with the Hamiltonian 
Xtt-X = 0 

H = #(x,)2 - x'] 

t One of the referees of this paper suggested that X may be proportional to the total energy d 

$ A very similar, sign-indefinite invariant was mentioned, in a related context, by Cushman- 
minus the particular form of Y that cancels the dominant potential energy. 

Roisin, Sutyrin & Tang (1992) and Benilov (1992). 
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describes a particle on the solid parabola turned upside down and evidently has no 
stable solutions at all. An example of a partial differential system with sign-indefinite 
Hamiltonian can be seen in 

+a, 

!Pi-@ = 0, @,+V2Y = 0; A? = t [ [  [(VY)2-@2]dxdy. 
J J - a ,  

System (30) is of the elliptical type and its only steady solution 

Y=O,  @ = O  
is unstable with respect to short-wave perturbations. 

Although system (12) has a much more complicated structure than the above 
equations, the link between its sign-indefinite Hamiltonian and short-wave instability 
seems to be similar. 

7. (n + 1)-mode system 
System (12) describes the interaction of only two 'quasi-modes' and therefore 

cannot ' resolve' flows with complicated three-dimensional structure. In order to derive 
a more general system, we shall consider interaction of one barotropic and n baroclinic 
quasi-modes : 

n 

I-1 
P(X, Y ,  z, 0 = ~ ( 4  + Wx, Y ,  0 + C W,(x, Y ,  0 + @& Y ,  0 #&)I, .I' = 1 2, . . . , n. (3 1) 

The quasi-modes are defined in n separate layers of equal depths: 

#,(z) + 0 only if -j/n < z < -(j- l)/n, 

where their profiles satisfy the following conditions : 

1 
n 

#fdz = -. 4,d.z = 0, 

In order to render Y the barotropic-mode amplitude, we set 
n 

3-1 

c 'kj = 0, 

while the condition of vertical continuity yields 

y: + @j #,( -i/4 = q+, + @j+14,+1(-i/n), i = 192, . . ., n - 1 

Without loss of generality we may assume that 

(32) 

(33 4 

#j(--i/4 = +j(--(i+ l)/n) = 1, 
which yields 

Finally, substituting ansatz (31) into (9) and taking into account (32) and (334, we 
obtain 

Y j + @ I =  Yj+l+@I+l, j =  1,2 ,.", n-1. (33 4 

a 
at 

(33 c> I -@j+J(Y+YI,@I)=O, i =  1,2 ,..., n, 

I n  a 
qV2Y+J(Y,V2Y)+- C [J(Yj,V2YI)+J(@j,V2@,)]+/?- Y = 0. 
at 5-1 ax 
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The number of equations in system (33) is equal to the number of unknown functions. 
Increasing n, we can resolve three-dimensional structure of a given flow with any 
required accuracy. 

Consider the case n = 2. Using (33a, b) we can express Yl and Y2 via G1 and a2: 
Yl = %G2 - GI), Y2 = - a2). 

Substituting these expressions into (33 c), we obtain 

a a 
at at 
- @ ~ + J ( Y + ~ @ 2 , @ J = 0 ,  -@2+J(Y++@l,@2) = O ,  

a 
-v2Y+ at J(y, V’W +q[J(@,, V2@,) + J(Q2, V2G2)] 

a 
-+[J(CD, ,V~@~)+ J(@2,V2@l)]+/3x Y = 0. 

This system describes one barotropic and two baroclinic quasi-modes, and its structure 
is quite similar to that of the two-mode system (12). 

8. Conclusions 
The main result of the present paper is the derivation of the asymptotic system (9), 

which describes geostrophic flows with large displacement of isopycnal surfaces and 
weak @-effect. 

It was further demonstrated that this three-dimensional system can be reduced to the 
two-dimensional system (1 2) which governs the amplitudes of barotropic and baroclinic 
components of the flow (the amplitudes depend on the horizontal spatial variables and 
time). It should be emphasized that, in contrast with linear wave systems, the vertical 
profile of the baroclinic component (‘quasi-mode ’) is arbitrary. System (12) describes 
both density-driven currents and fronts, which indicates that it can be used as a robust 
qualitative model of large-amplitude motion in general. 

It was demonstrated that within the framework of (12), all large-amplitude zonally 
homogeneous flows, regardless of their vertical structure, are unstable with respect to 
short-wave perturbations. The parameters of the instability coincide with the 
corresponding limit of the quasi-geostrophic baroclinic instability. It was also 
demonstrated that the Hamiltonian of (12) is sign-indefinite, which indicates that all 
steady solutions are unstable. This conclusion agrees with the existence of short-wave 
instability of fronts and currents observed experimentally, and seems to be a strong 
argument in favour of the present theory. 

System (12) describes the interaction of only two quasi-modes, and therefore cannot 
resolve flows having complicated three-dimensional structure. In this case it can be 
generalized to describe an arbitrary number n of barclinic quasi-modes - the n-mode 
system can ‘resolve’ any given flow with any required accuracy. 

Finally, the results obtained can be easily generalized to the case of an uneven 
bottom, provided that the depth variations are much smaller than the average depth 
of the ocean. 
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Appendix. Proof of inequality (19) 
Using (17), inequality (19) can be rewritten in the form 

2 ll (211.' + z2$") dz 2 1, 

where $(z) is a smooth function, defined on the interval (- 1,O) and satisfying 
constraints (14) : 

N3 = 0, (A 2) 

$dz=  1. Ll 
It is convenient to treat y as a functional depending on +(z). Since y[$(z)] is positive, 
it has to have a minimum, where its variation equals to 0. Taking into account 
constraint (A 3), we have 

where h is the corresponding Lagrange multiplier. Equation (A 4) can be rewritten in 
the form of a differential equation 

$min - i ( z z f m d '  + = 0 

$m,n = c1z+c ,2-2-h .  
and easily integrated 

Substitution of (A 5 )  into (A 2), (A 3) yields c1 = 2, c, = 0, h = - 2 and 

$min = 2(z + I>,  Ymin = 1 * 

Evidently, the minimum value of y corresponds to the two-layer model (cf. $3.2). 
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